Estimating the Burden of COVID-19 in Luxembourg over three years of pandemic, with a focus on the uncertainty associated with PAC

Susanne Schmitz, Jérôme Weiss, Daniel Alvarez-Vaca, Martine Debacker, Guy Weber, Ala'a Alkerwi

Epidemiology and Statistics Unit, Directorate of Health, Ministry of Health and Social Security, Luxembourg

2nd international burden of disease conference 15th March 2024, Trieste

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de la Santé et de la Sécurité sociale

Direction de la santé

Evaluate the burden of COVID-19

- In Luxembourg (resident population)
- Over 3 years (March 2020 March 2023)

Uncertainty associated with PAC (post acute consequences)

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

DALY = YLD + YLL

** adjusted for comorbidity profiles using the Charlson comorbidity index

3

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Consensus model (burden.eu)

Consensus model (burden.eu)

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Consensus model (burden.eu)

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Symptom related DW

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Long COVID Symptomatology After 12 Months and Its Impact on Quality of Life According to Initial Coronavirus Disease 2019 Disease Severity Aurelie Fischer,^{1,6} Lu Zhang,² Abir Elbéji,¹ Paul Wilmes,³ Pauline Oustric,⁴ Therese Staub,⁵ Petr V. Nazarov,^{2,6} Markus Ollert,^{1,2} and Guy Fagherazz^{1,6}

Symptom related DW

- 炎

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Long COVID Symptomatology After 12 Months and Its Impact on Quality of Life According to Initial Coronavirus Disease 2019 Disease Severity Aurélie Fischer.¹⁰ La Zhang² Abir Ebéji,¹ Paul Wilmer,³ Pauline Oustric,¹ Therees Staub,¹ Potr V. Nazarov.¹⁰ Markus Ollert,³ and Guy Foghera

Symptom Profiles: Comparison 1: Mild vs Control Comparison 2: Moderate/Severe vs. Control

Disability weights per symptom (use equivalent health state, GBD 2019)

PAC disability weight

Step 1) calculate average disability weights for each profile, weighted by individual symptom frequencies

Step 2) adjust for number of total symptoms per PAC case (N=2) (Sørensen et al.)

Results

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Sex and age-specific measures

Sensitivity analysis

Results

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

Scenario Analysis

- Over three years: 17 801 DALYs in the resident population in Luxembourg (annual rate per 100 000: 934 DALYs).
- Increasing YLD contribution with time (5% in year 1 to 28% in year 3).
- > PAC parameters are key drivers of uncertainty.
 - Urgent need to harmonize; develop PAC specific DW.
 - Until then: Symptom-based approach may be suitable to account for the heterogenous symptoms across patients.

References

- Burden of disease of COVID-19 PROTOCOL FOR COUNTRY STUDIES. [cited 2024 Feb 4]; Available from: https://www.burdeneu.net/
- Fischer A, Zhang L, Elbéji A, Wilmes P, Oustric P, Staub T, et al. Long COVID Symptomatology After 12 Months and Its Impact on Quality of Life According to Initial Coronavirus Disease 2019 Disease Severity. Open Forum Infect Dis [Internet]. 2022 Aug 2 [cited 2024 Feb 4];9(8). Available from: <u>https://dx.doi.org/10.1093/ofid/ofac397</u>
- Howe S, Szanyi J, Blakely T. The health impact of long COVID during the 2021-2022 Omicron wave in Australia: a quantitative burden of disease study. Int J Epidemiol [Internet]. 2023 Jun 1 [cited 2024 Feb 4];52(3):677–89. Available from: https://pubmed.ncbi.nlm.nih.gov/37011639/
- Wyper GMA, McDonald SA, Haagsma JA, Devleesschauwer B, Charalampous P, Maini R, et al. A proposal for further developing fatigue-related post COVID-19 health states for burden of disease studies. Archives of Public Health [Internet]. 2023 Dec 1 [cited 2024 Feb 4];81(1). Available from: /pmc/articles/PMC10621107/
- Woodrow M, Carey C, Ziauddeen N, Thomas R, Akrami A, Lutje V, et al. Systematic Review of the Prevalence of Long COVID. Open Forum Infect Dis [Internet]. 2023 Jul 1 [cited 2024 Feb 4];10(7). Available from: <u>https://dx.doi.org/10.1093/ofid/ofad233</u>
- Sørensen AIV, Spiliopoulos L, Bager P, Nielsen NM, Hansen JV, Koch A, et al. A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV-2 infection in Denmark. Nat Commun [Internet]. 2022 Dec 1 [cited 2024 Feb 4];13(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35864108/

LE GOUVERNEMENT

DU GRAND-DUCHÉ DE LUXEMBOURG

Thank you for listening. Any questions?

Base case table

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

	YLD		YLL		DALY			
	TOTAL	Rate*	TOTAL	Rate*	TOTAL	Rate*		
Total	2898	152	14903	782	17801	934		
By pandemic year								
15 March 2020 -								
14 March 2021	445	71	7794	1245	8240	1316		
15 March 2021 -								
14 March 2022	1077	170	3526	556	4603	725		
15 March 2022 –								
14 March 2023	1376	213	3582	555	4958	768		

Scenario analysis table

LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG

	YLD		YLL		DALY	
	TOTAL	Rate*	TOTAL	Rate*	TOTAL	Rate*
National data (base case)	2898	152	14903	782	17801	934
Only acute phase – no PAC	358	19	14903	782	15260	801
Consensus model approach	9166	481	14903	782	24068	1263
Anaemia-based approach	2520	132	14903	782	17423	914

Input parameter table

Parameter					
Disability weights – acute phase					
Mild/Moderate		0.051	0.032	0.074	Burden-eu(16)
Severe 0		0.133	0.088	0.190	
Critical		0.655	0.579	0.727	
Duration – acute phase, in days					
Mild/Moderate		7.8	7.0	14.0	Several studies (19–23)
Severe, by age groups	0-19 years	2.7	2.4	3.1	National surveillance
	20-39 years	5.8	5.2	6.9	data (mean, 95%
	40-59 years	8.9	8.2	10.1	confidence interval by
	60-79 years	12.3	11.6	13.1	bootstrapping)
	80+ years	14.3	13.5	15.1	bootsti appirig)
Critical, by age groups	0-19 years	9.3	3.3	23.3	National surveillance
	20-39 years	10.7	7.4	18.7	data (mean, 95%
	40-59 years	15.9	13.8	18.7	confidence interval by
	60-79 years	15.6	5 13.9 17.7 confidence interval by bootstrapping)		
	80+ years	9.2	7.9	10.9	bootstrapping)
Comorbidity parameters					
	0-44 years	1.00	1.00	1.00	RNCD
group	45-49 years	0.82	0.57	1.00	
	50-54 years	0.96	0.77	1.00	
	55-59 years	0.94	0.87	1.00	
	60-64 years	0.88	0.76	1.00	
	65-69 years	0.80	0.72	0.88	
	70-74 years	0.91	0.82	0.99	
	75-79 years	0.88	0.81	0.96	
	80-84 years	0.92	0.86	0.97	
	85-89 years	0.92	0.88	0.95	
	90-94 years	0.94	0.90	0.98	
	95+ years	0.97	0.91	1.00	
Other input parameters					
Asymptomatic among detected					Hypothesis
(0/)		200/	00/	409/	

Parameter							
			case	limit			
PAC parameters	S						
	Symptom based	Mild/Moderate	0.063	0.037	0.095	Fischer et al(5),	
	reight (by onset	Severe	0.071	0.043	0.106	Sørensen et al(24),	
severity) Anaemia (by onset severity)	severity)	Critical	0.071	0.043	0.106	Burden-eu(16)	
	Anaemia (by	Mild/Moderate	0.052	0.034	0.076	Wyper et al(25)	
	onset severity)	Severe	0.149	0.101	0.209		
	5.	Critical	0.149	0.101	0.209		
Consensus model			0.219	0.148	0.308	Burden-eu(16)	
Duration, in months			12	6	24	Fischer et al(5),	
		hypothesis, Woodrow et					
						al(7)	
			13.6%	1.2%	68%	Woodrowet al(7)	

17