

Using novel methodologies to support burden of disease estimates

Tine Hald, tiha@food.dtu.dk

National Food Institute, Technical University of Denmark On behalf of the FOCAL project team WCPH 2020, October 15

DTU

The burden of diarrheal infectious illnesses

WHAT WE KNOW

Surveillance data – reported cases

WHAT WE WANT TO KNOW

The true number of cases

Burden of illness approach in FOCAL

Approaches for estimating etiology proportions

- Systematic review of peer-reviewed inpatient, outpatient and community studies
- Review of available health-care surveillance data incl. hospital records
- Relative abundance of pathogen-specific genes in untreated sewage samples from the same populations (i.e. using MG analysis).

Etiology proportions

What is the relative contribution from each diarrhoea-causing microorganism to the total burden of diarrheal illness?

Why metagenomics?

- Detects all DNA in a sample
- DNA sequence information is a universal "language"
- Can be provided in standardized electronic format
- Can be readily shared between laboratories and disciplines (microbiologist, bioinformaticians, epidemiologists, doctors, etc.)
- DNA sequences are archived, and thus available for further analysis

Environmental samples of sewage, soil, water, etc.

Metagenomics – wet lab

8

DTU Ħ

Metagenomics – dry lab

Quality control and trimming

Mapping reads to genomes of interest e.g. bacterial genomes or antimicrobial resistance genes.

	Sample 1	ample 2	Sample 3	Sample 4
Ref 1	23	56	0	45
Ref 2	15	0	11	2
Ref 3	6	17	33	0

Global Surveillance of AMR using sewage

- 60 countries across all continents
- 79 samples of urban sewage

ARTICLE

ps://dei.arg/10.1038/s41467-019-04853-3 OPE

Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

Rene S. Hendriksen¹, Patrick Munk ¹, Patrick Njage¹, Bram van Bunnik ², Luke McNally³, Oksana Lukjancenko¹, Timo Röder¹, David Nieuwenhuijse⁴, Susanne Karlsmose Pedersen¹, Jette Kjeldgaard¹, Rolf S. Kaas¹, Philip Thomas Lanken Conradsen Clausen¹, Josef Korbinian Vogt¹, Pimlapas Leekitcharoenphon¹, Milou G.M. van de Schans⁵, Tina Zuidema⁵, Ana Maria de Roda Husman⁶, Simon Rasmussen ⁰, Bent Petersen⁷, The Global Sewage Surveillance project consortium[#], Clara Amid⁸, Guy Cochrane⁸, Thomas Sicheritz-Ponten⁹, Heike Schmitt⁶, Jorge Raul Matheu Alvarez¹⁰, Awa Aidara-Kane¹⁰, Sünje J. Pamp¹, Ole Lund⁷, Tine Hald¹, Mark Woolhouse², Marion P. Koopmans⁴, Håkan Vigre¹, Thomas Nordahl Petersen¹ & Frank M. Aarestrup ⁰

Hendriksen et al., Nature Coomunications, 2019 *

Global sewage resistomes

Hendriksen et al., Nature Communications, 2019 •

Conclusions

- Sewage-based surveillance using metagenomics is flexible, scalable, and easy to quickly implement and standardize
- Surveillance of sewage for AMR occurrence works pretty well; able to quantify resistance occurrence.
- For pathogen detection, sewage sampling can provide a qualitative snapshot of pathogens occurrence in a population
 - When refined, it may also provide a reliable quantitative snapshot
- Sewage-based surveillance may complement and support
 - The detection and surveillance of 'silent' epidemics
 - Clinical, isolate-based surveillance
 - Burden of illness studies

DTU

Acknowledgement

30 September 2020

- This work is part of the "FOCAL (Foodborne disease epidemiology, surveillance, and Control in African LMIC)" Project
 - a multi-partner, multi-study research grant co-funded by the Bill and Melinda Gates Foundation and the Foreign, Commonwealth & Development Office (FCDO) of the United Kingdom Government [Grant Agreement Investment ID OPP1195617]

FOCAL team: Tine Hald¹, Frank Aarestrup¹, Patrick Murigu Kamau Njage¹, Sara M. Pires¹, Tesfaye Gobena², Yonas Hailu², Elsa Maria Salvador³, Custodia Macuamule³, Belisario Moiane³, Olanrewaju Emmanuel Fayemi⁴, Christianah Idowu Ayolabi⁴, Oluwatoyin. A. Adelowotan⁴, Blandina Theophil Mmbaga⁵, Happiness Kumburu⁵, Kate Thomas^{5,6}, Elna Buys⁷, Rodney Owuso-Darko⁷, Kathleen Earl Colverson⁸, and Shannon Majowicz⁹

